Chemical Characteristic of Submicron Particles in the West Sea of Korea Using Airborne Measurements: Focusing on 2019-2023

National Institute of **Environmental Research**

EA

2

Jinsoo Park¹, Jinsoo Choi¹, Junyoung Ahn¹, Min-Young Sung¹, Jiyun Jung¹, Yonghan Jo¹, Myungsoo Yoo¹, Taehyun Park², Jongho Kim³, Taehyoung Lee²

¹National Institute of Environmental Research, Climate and Air Quality Research Department, Incheon, South Korea ²Hankuk University of Foreign Studies, Environmental Science, Yongin, South Korea ³Hanseo University, Institute of Environment Research, Seosan-si, South Korea

INTRODUCTION

* Background

- KORUS-AQ concluded the necessity of using medium-sized aircraft for observations during high pollution seasons Airborne observations are required to understand the long-range transport of air pollutants and the impact of large pollution sources in the Seoul Metropolitan Area and surrounding regions
- Objectives
 - Real-time observation of major components of PM_{1.0} and gases using airborne measurements
 - Understanding the characteristics and inflow amount of long-range transported PM1 and gases Identifying the spatial distribution of PM1.0 and gases from foreign sources and local (domestic) emissions

Specifics

- Analysis of high PM₁₀ episode in winter and spring
- Investigation of the spatial distribution of PM1.0/precursor over the west and east sea and the Seoul metropolitan area during where and spring Identification of greenhouse gases (such as CO₂/ CH₄, CO) distribution according to regional characteristics such as background
- atmosphere, Seoul metropolitan area, and emission sources
- Identification of the distribution of air pollutants over large point sources in Chungcheong-do and other area
- Advantages of Airborne Measurements for Air Pollution -Equipped with high-performance instrument and based on outstanding mobility/accessibility, observation of air pollutants over a wide area

Results

* Aircraft Flight path: 2019.11 - 2023.05

Targe 22-23 20-21 21-22 4 Large Point So 3 na (include Oin 5 5 SM/ East sea Total (hours)

♦PM_{1.0} concentration

10

[NH4]/[SO4]

[NH4]/[SO4]

2

Method

Configuration and Instruments of instr nts and o Category Instrument Species PTR-ToF-MS Volatile Organic Carbons Off-axis ICOS NH₃ $\rm NH_3$ Off-axis ICOS CO. CO., CH. CAPS NO_2 Chemiluminescence 07 TILDAS HCHO CH-O CIMS HNO₃, SO₂ HR-TOE-AMS NR-PM1 (O, N, S, Am)*,O:C, H:C et Particles UHSAS, PCAPS Size distributions SP2 rBC AIMMS-30 Meteorology (T, H, P, WS, WD)*

(Air data probe) GPS (Lat, Lon, Alt)* and GPS *O : Orga ate, S : sulfate, Am : humidity, P : pressure, WS : wind speed, WD : wind direction longitude, Alt : altitude perature, H : h

Table 4. Summary of significant correlation coefficient				
Correlation	2019 -> 2023	PM ₁ , Org	NO ₃ -(f_NO ₃ -)	SO4 ²⁻ (f_SO4 ²⁻)
+	f_NO3 ⁻ , f_NH4 ⁺ , C _P T/B, OVOCs	BC, CO ₂ , SO ₂	BC, CO, CO ₂ (f_NH ₄ ⁺ , CO, TOL, C ₈)	RH, CH ₄ , SO ₂ , Benzene
-	SO4 ²⁻ , f_SO4 ²⁻ , SO2, NH3	f_CHOz	(f_SO42-, f_CH)	f_CHOz, T/B (Toluene)

- PM₁, Org > Impact of relatively nearby sources during long-range transport
- NO3 (f_NO3) Correlation with the stable compounds 个

Correlation with the stable compounds 1.
More impact of secondary formation compared to direct emissions
Increasing lifetime = f_Org → f_NO₃

- SO42- (f_SO42-) Formation by aqueous phase reaction?
 Impact of large point sources?

- Toluene / Benzene ratio increase
- changes in emission patterns and impacts
- PM_{1.0} high concentration case, there is a chance to originate from a far location ≥ Lif = Benzene(10 days) > Toluene(2.5 days) (Sahu et al., 2020)

Summary

- We conducted winter airborne measurement from November 2019 to May 2023 (124 times, 402 hours). 1.
- In winter, long-range transport PM_{1.0} concentration keeps decreasing trend. 2.
- 3. Trends of influx ration from other countries was an increase for NO3⁻ and toluene/benzene ratio, and a decrease for SO42-. It seems to be the effect of changes in emission characteristics due to China air pollution reduction policies
- The concentration of NO₃⁻ is high when influx from Sector3 and the concentration of SO₄²⁻ is high when influx from Sector4. Therefore, the case of long-range transport episodes, it is important to figure out the influx path or sector.
- Reduction in NH₃ emission due to China NH₃ reduction policies, SO₄²⁻ is not neutralized and exist as a type of 5. (NH₄)HSO₄. There is possibility of increased PM concentration due to additional reaction with NH₃ at inland.
- Continual increase in toluene/benzene ratio observed every year. The higher the concentration in high concentration cases, the lower the toluene/benzene ratio. This is a result of the short lifetime of toluene suggesting that originate from a farther location in high concentration cases.

Reference

- Chen, Youfan, et al. "High-resolution ammonia emissions from nitrogen fertilizer application in China during 2005–2020." Atmosphere 13.8 (2022): 1297
- Sahu, L. K., Ravi Yadav, and Nidhi Tripathi. "Aromatic compounds in a semi-urban site of western India: seasonal variability and emission ratios." Atmospheric Research 246 (2020): 105114.